分子・生体モデリングと情報処理

(Molecular/Biological modeling and Information processing)

担当教員 教授 栄田 敏之 教授 上野 嘉夫 山下 正行 教授 古田 巧 教授 大石 直也 教授 教授 藤原 洋一 准教授 小島 直人 准教授 小林 祐輔 准教授 小林 数也 伊藤 由佳子 講師 石川 誠司 講師 河渕 真治 助教 助教 岩﨑 宏樹 浜田 翔平 助教

科目群	開講期	授業形態	単位数	必修等
薬学専門教育(実習等)	4年次 前期	実習	0.5単位	必修

学生実習支援センター 教員

【概要】

近年のICTの発展は著しく、その成果に基づいて、医薬品を創出する、あるいは適正に使用することが推し進められている。本実習では、代表的な例、すなわち、薬物と標的タンパク質とのドッキングシミュレーション、薬物の血中濃度推移のシミュレーションを取り上げるとともに、プログラミング(初歩)と統計処理に関して、理解を深める。

【授業の一般目標】

創薬、あるいは医薬品の適正使用におけるICTの活用に関する基本的知識を修得し、それを応用できる技能を身につける。

[関連する卒業認定・学位授与方針] DP1・DP2

【準備学習(予習·復習)】

事前に実習書の該当する項目を熟読し、よく理解した上で実習に臨むこと。実習後は実習書および演習室のPCを活用して復習し、知識・技能を深めること。毎回の予習・復習を合わせて150分程度の学修が必要である。

【学習項目・学生の到達目標と、対応するSBOコード】

No	学習項目	担当教員	学生の到達目標	SB0コード
1	プログラミング初歩と統計	全員	初等的な計算操作をプログラミングし実行できる。目的に応じて	E3-(1)5,E3-
	処理		,適切な統計処理手法を選択し,PC上で実行できる。	(1)7
2	医薬品と標的タンパク質と	全員	計算化学ソフトウェアを用いて医薬品の三次元構造モデルを作成	C4-(3)1
	のドッキングシミュレーシ		できる。医薬品とタンパク質とのドッキングシミュレーションを	
	ョン		行うことができる。	
3	薬物の血中濃度推移のシミ	全員	薬物血中濃度データから薬物の血中濃度推移のシミュレーション	E4-(2)1, 2, 3,
	ュレーション		を行う技術に関して理解を深める。	4, 5

(書名)

(著者・編者)

(発行所)

教科書 実習書を配布する。

【成績評価方法·基準】

課題提出およびレポート(100%)により評価を行う。ただし、全実習項目へ遅刻、早退することなく出席すること、

およびレポートの期限内提出は必須とする。

【評価のフィードバック】

実習全体およびレポートなどの講評は合格発表以降に掲示にて公開する。